7 research outputs found

    Application of dynamic visual cryptography for optical control of chaotic oscillations

    Get PDF
    This paper proposes an optical experimental technique for the optical control of chaotic oscillations. Technique is based on the application of dynamic visual cryptography for chaotic oscillations. Initially, the secret information is encoded into a single stochastic moiré grating, which is fixed onto the surface of the vibrating structure. It is shown, that the secret can be visually decoded if the cover image oscillates according to a chaotic law. Therefore, a simple visual inspection can be used to determine if the parameters of the chaotic oscillations remain in the allowed range

    Near-optimal pitch of a moiré grating for image hiding applications in dynamic visual cryptography

    Get PDF
    Dynamic visual cryptography is based on hiding of a dichotomous secret image in the regular moiré grating. One pitch of the moiré grating is used to represent the secret image and a slightly different pitch of another moiré grating is used to form the background. The secret is decoded in the form of a pattern of a time-averaged moiré fringe when the cover image is oscillated according to a predefined law of motion. The security of the encoding and the sharpness of the decoded secret are mostly influenced by the selection of the pitches of moiré grating. This paper proposes scheme for the determination of near-optimal pitches of the moiré grating for image hiding in dynamic visual cryptography

    Near-optimal pitch of a moiré grating in dynamic visual cryptography

    Get PDF
    Dynamic visual cryptography (DVC) is a technique for the encryption and decryption of visual secret information. The confidential visual information in DVC is concealed embedding the secret image into the regular moiré grating. The secret can be perceived from the cover image if only the cover image is oscillated according to a predefined law of motion and time-averaging techniques are used. The security of the encryption procedure and the quality of the decrypted image depend on the proper preselection of the pitches of a moiré grating used in the encryption stage. This paper presents the main principles of the determination of near-optimal pair of the pitches of moiré grating as well as graphical schemes and analytical equations in case of harmonic and chaotic oscillations

    Image Hiding in Stochastic Geometric Moiré Gratings

    No full text
    An image hiding scheme based on stochastic moiré gratings is proposed, discussed, and illustrated in this paper. The proposed scheme is based on a counter-intuitive optical feature of specially designed stochastic moiré gratings when similar images in the static mode become very different in the time-averaged mode. A soft computing PSO algorithm was used for the construction of stochastic gratings. Complex computational algorithms were required to construct the cover image; however, the decryption process was completely visual. The cover image must oscillate in a predefined direction and at a predefined amplitude (the amplitude of the harmonic oscillation is one of the parameters of the proposed image hiding scheme). Computational experiments were used to demonstrate the efficacy of this optical image hiding scheme based on the stochastic moiré gratings

    Information Hiding Based on Statistical Features of Self-Organizing Patterns

    No full text
    A computational technique for the determination of optimal hiding conditions of a digital image in a self-organizing pattern is presented in this paper. Three statistical features of the developing pattern (the Wada index based on the weighted and truncated Shannon entropy, the mean of the brightness of the pattern, and the p-value of the Kolmogorov-Smirnov criterion for the normality testing of the distribution function) are used for that purpose. The transition from the small-scale chaos of the initial conditions to the large-scale chaos of the developed pattern is observed during the evolution of the self-organizing system. Computational experiments are performed with the stripe-type patterns, spot-type patterns, and unstable patterns. It appears that optimal image hiding conditions are secured when the Wada index stabilizes after the initial decline, the mean of the brightness of the pattern remains stable before dropping down significantly below the average, and the p-value indicates that the distribution becomes Gaussian
    corecore